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ABSTRACT
The proliferation ofWeb services makes it difficult for users to select

the most appropriate one among numerous functionally identical

or similar service candidates. Quality-of-Service (QoS) describes

the non-functional characteristics of Web services, and it has be-

come the key differentiator for service selection. However, users

cannot invoke all Web services to obtain the corresponding QoS

values due to high time cost and huge resource overhead. Thus, it

is essential to predict unknown QoS values. Although various QoS

prediction methods have been proposed, few of them have taken

outliers into consideration, which may dramatically degrade the

prediction performance. To overcome this limitation, we propose an

outlier-resilient QoS prediction method in this paper. Our method

utilizes Cauchy loss to measure the discrepancy between the ob-

served QoS values and the predicted ones. Owing to the robustness

of Cauchy loss, our method is resilient to outliers. We further ex-

tend our method to provide time-aware QoS prediction results by

taking the temporal information into consideration. Finally, we

conduct extensive experiments on both static and dynamic datasets.

The results demonstrate that our method is able to achieve better

performance than state-of-the-art baseline methods.
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1 INTRODUCTION
Web services provide interoperability among disparate software

applications and play a key role in service-oriented computing [3].
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Over the past few years, numerous Web services have been pub-

lished as indicated by theWeb service repository–ProgrammableWeb
1
.

The proliferation of Web services brings great benefits in building

versatile service-oriented applications and systems.

It is apparent that the quality of service-oriented applications

and systems relies heavily on the quality of their component Web

services. Thus, investigating the quality ofWeb services is an impor-

tant task to ensure the reliability of the ultimate applications and the

entire systems. The quality of Web services can be characterized by

their functional and non-functional attributes. Quality-of-Service

(QoS) represents the non-functional aspect of Web services, such

as response time, throughput rate and failure probability [37, 47].

Since there are many functionally equivalent or similar services

offered on the Web, investigating non-functional QoS properties

becomes the major concern for service selection [12, 62]. However,

the QoS value observed by users depends heavily on the Web ser-

vice invocation context. Hence, the quality of the same Web service

experienced by different users may be relatively different [42]. For

this reason, it is important to acquire personalized QoS values for

different users. Considering that users cannot invoke all Web ser-

vices to obtain personalized QoS values on their own due to high

time cost and huge resource overhead [47, 61], predicting missing

QoS values based on existing observations plays an essential role

in obtaining approximate personalized QoS values.

Matrix factorization (MF) is arguably the most popular technique

adopted for QoS prediction [16, 61, 68]. However, most existing MF-

based QoS prediction methods directly utilize L2-norm to measure

the difference between the observed QoS values and the predicted

ones [31, 44, 48, 50, 53, 57, 66]. It is well-known that L2-norm is

sensitive to outliers [8, 58, 63, 70]. That is, the objective function

value may be dominated by outliers during the L2-norm minimiza-

tion process, which will lead to severe approximation deviation

between the observed normal values and the predicted ones. As

a result, without taking outliers into consideration, existing MF-

based methods may not achieve satisfactory performance. In recent

years, there are some explorations on enhancing the robustness of

MF-based QoS prediction methods by replacing L2-norm with L1-
norm [71]. Although L1-norm is more robust to outliers [13, 35, 64],

L1-norm-based objective function is much harder to optimize and

the solution is also unstable [34, 56]. Moreover, L1-norm is still

sensitive to outliers, especially when outliers take significantly dif-

ferent values from the normal ones [10, 55]. There are also some

1
https://www.programmableweb.com/
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methods seeking to identify outliers explicitly by means of cluster-

ing algorithms [18, 49, 72], which usually treat all the elements in

the smallest cluster as outliers [19, 47]. However, it is difficult to

choose the proper number of clusters. Consequently, these methods

usually suffer from the misclassification issue. That is, either some

outliers may not be eliminated successfully or some normal values

may be selected as outliers falsely.

In this paper, we propose a robust QoS prediction method under

the matrix factorization framework to deal with the aforementioned

issues. Our method chooses to measure the discrepancy between

the observed QoS values and the predicted ones by Cauchy loss

[2, 27] instead of the L1-norm loss or L2-norm loss. It has been

shown that Cauchy loss is much more robust to outliers than the

L1-norm loss and L2-norm loss [27, 55]. Theoretically, Cauchy loss

allows nearly half of the observations to be out of the normal range

before it gives incorrect results [36]. For a given QoS dataset, it

is unlikely that nearly half of the observations are outliers. Thus,

Cauchy loss is sufficient for outlier modeling and has the potential

to provide better prediction results. Note also that our method does

not explicitly identify outliers, which reduces the risk of misclassi-

fication and makes our method more general and more robust. In

other words, our method is resilient to outliers. Considering that

the QoS value of a Web service observed by a particular user may

change over time, it is essential to provide time-aware personalized

QoS prediction results. To achieve this goal, we further extend our

method under the tensor factorization framework by taking the

temporal information into consideration.

In summary, the main contributions of this paper include:

• First, we propose a robustWeb service QoS predictionmethod

with outlier resilience. Our method measures the discrep-

ancy between the observed QoS values and the predicted

ones by Cauchy loss, which is robust to outliers.

• Second, we extend our method to provide time-aware QoS

prediction results under the tensor factorization framework

by taking the temporal information into consideration.

• Third, we conduct extensive experiments on both static and

dynamic datasets to evaluate the performance of our method.

The results demonstrate that our method can achieve better

performance than state-of-the-art baseline methods.

The rest of this paper is organized as follows. Section 2 explores

the unavoidability of outliers in QoS observations. Section 3 pro-

vides an overview on how matrix factorization can be employed for

QoS prediction. Section 4 presents the detailed descriptions of our

method and its extension for time-aware QoS prediction. Section 5

reports the experimental results. Section 6 gives a brief review of

the related work. This paper is finally concluded in Section 7.

2 UNAVOIDABILITY OF QOS OUTLIERS
Most existing QoS prediction methods assume that the QoS obser-

vations are reliable and rational. However, this assumption may not

hold in the real world. This is because the observed QoS data can

be affected by many factors. For example, there may be some mali-

cious users submitting wrong QoS values deliberately. The service

providers may also pretend to be service users and thus exaggerate

the performance of their own Web services and depreciate the per-

formance of their competitors’ Web services. In addition, the QoS
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Figure 1: The distribution of response time and through-
put of randomly selectedWeb services observed by different
users from the publicly available dataset WS-DREAM.

values observed by users are largely dependent on the invocation

environment such as network latency and server overload, which

may lead some of the QoS values to deviate far from the normal

range. In consideration of these complicated factors, we argue that

it is highly possible that some of the QoS observations are outliers.

However, we are in lack of an oracle showing in advance which

QoS observations are outliers. Here, we treat the rare extreme val-

ues which significantly differ from the remaining ones as outliers

by following the definition in [24]. To be more intuitive, in Figure 1

(a) and (b), we show the distribution of both response time and

throughput of 100 Web services invoked by 3 randomly selected

users from a publicly available dataset–WS-DREAM_dataset1
2
. As

can be seen, although a user tends to have different usage expe-

riences on different Web services, most QoS values of these Web

services observed by the three users fall into a normal range. For

example, the response time mainly falls in the interval of [0, 2].

However, there are also some observations deviating far from the

normal range. As shown in Figure 1 (a), the response time experi-

enced by user 2 even reaches up to 14 seconds, which is far beyond

the normal range. Needless to say, such kind of observations should

be treated as outliers. We further demonstrate the distribution of

response time and throughput of 3 Web services experienced by

100 different users in Figure 1 (c) and (d). It can be observed that

although the usage experiences of a Web service can vary widely

among different users, the QoS values of the same Web service

observed by the majority of users tend to fall into a normal range.

Whereas, there are also some observations taking values far beyond

the normal range. These phenomena verify the rationality of treat-

ing extreme values as outliers and also reveal the unavoidability of

outliers in QoS observations.

2
https://github.com/wsdream/wsdream-dataset/tree/master/dataset1
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3 PRELIMINARIES
Suppose that we are providedwith a set ofm users and a set ofnWeb

services, then the QoS values between all users and Web services

can be represented by a matrixX ∈ Rm×n whose entryXi j denotes

the QoS value of Web service j observed by user i . Obviously, it is
time-consuming and resource-consuming for each user to invoke all

Web services to get the personalized QoS values. As a consequence,

we typically have only partial observations between users and Web

services, which means that lots of entries in X are null. The goal

of QoS prediction is to predict these null entries by exploiting the

information contained in existing observations.

3.1 Problem Definition
Let Ω denote the set of existing QoS observations, that is,

Ω = {(i, j,Xi j ) | the QoS value Xi j between user i and

Web service j has been observed}.
(1)

Then the problem of QoS prediction is defined as follows.

Problem Statement: Given a set of QoS observations Ω, QoS
prediction aims at predicting unknown QoS values by utilizing the

information contained in Ω.

3.2 Matrix Factorization for QoS Prediction
Generally speaking, matrix factorization tries to factorize a given

matrix into the product of several low-rank factor matrices. In

the context of QoS prediction, the basic framework of MF-based

methods is to factorize matrix X into two low-rank factor matrices

U ∈ Rm×l and S ∈ Rn×l , i.e., X ≈ UST . Here, each row of U
represents the latent feature of a user, and each row of S represents

the latent feature of a Web service. The dimensionality of latent

features is controlled by a parameter l (l ≪ min(m,n)). Apparently,
UST should be as close to X as possible. As thus, the general objec-

tive function for MF-based QoS prediction methods can be derived

as:

min

U ,S
L(X ,UST ) + λLr eд , (2)

where L measures the degree of approximation betweenUST and

X , Lr eд denotes the regularization term to avoid over-fitting, and

λ represents the regularization coefficient.

The most widely adopted loss function in matrix factorization

is the least square loss (i.e., L2-norm loss), which is also the most

commonly used loss function in MF-based QoS prediction methods

[31, 57, 61, 66, 71]. In this setting, the specific objective function

can be clearly given as follows:

min

U ,S

1

2

∥I ⊙ (X −UST )∥2
2
+ λLr eд , (3)

where ∥ · ∥2 denotes the L2-norm which is calculated as the square

root of the sum of squares of all entries, ⊙ denotes the Hadamard

product (i.e., entry-wise product), and I ∈ Rm×n denotes the indi-

cator matrix whose entry Ii j indicates whether the QoS value of
Web service j has been observed by user i or not. If user i has the
record of Web service j, Ii j is set to 1; otherwise, it is set to 0.

The objective function based on L2-norm as in Eq. (3) is smooth

and can be optimized by the gradient descent method [15]. How-

ever, the L2-norm is sensitive to outliers (i.e., rare extreme values)

[63]. When the given observations contain outliers, the residuals

between these outliers’ corresponding entries inX and their approx-

imation entries inUST become huge due to the square operation.

Therefore, when minimizing the objective function in Eq. (3), more

priorities are given to these outliers, which unfortunately causes

severe approximation deviation of the normal QoS values. As a

result, the QoS prediction performance may degrade dramatically.

To make the model more robust to outliers, a common stategy is

to replace L2-normwith L1-norm [13, 23, 51, 71]. Based on L1-norm,

the objective function is formularized as below:

min

U ,S
∥I ⊙ (X −UST )∥1 + λLr eд , (4)

where ∥ · ∥1 denotes the L1-norm which is calculated as the sum

of the absolute values of all entries. Although L1-norm is to some

extent more robust to outliers than L2-norm, the objective function

based on L1-norm as in Eq. (4) is a non-smooth function and it is

much harder to optimize. What’s more, although the large residuals

due to outliers are not squared in L1-norm, they may still be quite

large relative to the normal ones and thus one would expect that

they would influence the objective function as well [10].

4 OUR METHOD
As stated in the previous section, both L1-norm and L2-norm are

sensitive to outliers. In order to make the MF-based methods more

robust to outliers, we propose a novel QoS prediction method that

utilizes Cauchy loss [2] as the measurement of the discrepancy

between the observed QoS values and the predicted ones. It has

been shown that Cauchy loss is resistant to outliers [17, 36, 55].

Thus, our method is expected to be robust to outliers.

4.1 M-Estimator
Before presenting the details of our method, we first introduce

the concept of M-estimator. In robust statistics, M-estimators are a

broad class of estimators, which represent the minima of particular

loss functions [21]. Let ri denote the residual of the i-th datum, i.e.,

the difference between the i-th observation and its approximation.

Then M-estimators try to optimize the following objective function:

min

∑
i
д(ri ), (5)

where functionд gives the contribution of each residual to the objec-
tive function. A reasonable function д should satisfy the following

four properties [14]:

• д(x) ≥ 0, ∀x ;
• д(x) = д(−x), ∀x ;
• д(0) = 0;

• д(x) is non-decreasing in |x |, i.e., д(x1) ≤ д(x2), ∀|x1 | < |x2 |.
The influence function of д is defined as its first-order derivative:

д′(x) =
dд(x)

dx
. (6)

The influence function д′ measures the influence of each datum

on the value of the parameter estimate. For a robust M-estimator,

it would be inferred that the influence of any single datum is in-

sufficient to yield any significant offset [55]. Ideally, a robust M-

estimator should have a bounded influence function.

Both L2-norm loss and L1-norm loss satisfy the four properties

required by M-estimators. For the L2 estimator with д(x) = 1

2
x2,

3101



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Ye, et al.

−4 −2 0 2 4
x

0

2

4

6

8

10 g1(x) = 0.5x2
g2(x) = |x|
g3(x) = ln(1+ x2)
g4(x) = ln(1+ (5x)2)
g5(x) = ln(1+ (0.5x)2)

(a) The Loss Function

−4 −2 0 2 4
x

−4

−2

0

2

4
g ′
1(x)

g ′
2(x)

g ′
3(x)

g ′
4(x)

g ′
5(x)

(b) The Influence Function

Figure 2: Comparison of different M-estimators.

the influence function is д′(x) = x , which means that the influence

of a datum on the parameter estimate grows linearly as the error

increases. This confirms the non-robusteness of L2 estimator to

outliers. Although the L1 estimator with д(x) = |x | can reduce the

influence of large errors due to its bounded influence function, it

will still be affected by outliers since its influence function has no

cut off point [27, 55] (|д′(x)| = 1 even when x → ±∞). Besides, L1
estimator is not stable because д(x) = |x | is not strictly convex in

x . It follows that the influence function of a robust M-estimator

should not only be bounded but also be insensitive to the increase

of errors (|д′(x)| → 0 when x → ±∞). Cauchy estimator has been

shown to possess such precious characteristics. The д function of

Cauchy estimator (i.e., Cauchy loss) is shown as follows:

д(x) = ln

(
1 +

x2

γ 2

)
, (7)

where γ is a constant. The influence function is then calculated as:

д′(x) =
2x

γ 2 + x2
, (8)

which takes value in the range of [− 1

γ ,
1

γ ]. Moreover, д′(x) tends

to zero when x goes to infinity. This indicates that the influence

function of Cauchy estimator is insensitive to the increase of errors.

Therefore, Cauchy estimator is robust to outliers. A comparison of

different M-estimators is illustrated in Figure 2.

4.2 Model Formulation
In view of Cauchy estimator’s robustness, we choose Cauchy loss

to construct the objective function of our method. Based on Cauchy

loss, the objective function is derived as:

min

U ,S
L =

1

2

m∑
i=1

n∑
j=1

Ii j ln

(
1 +
(Xi j −UiSTj )

2

γ 2

)
+
λu
2

∥U ∥2
2
+
λs
2

∥S ∥2
2
,

(9)

where Ui and Sj denote the i-th row of U and the j-th row of S
respectively, λu and λs represent the regularization coefficients.

The objective function in Eq. (9) can be efficiently optimized

by the gradient descent method [15]. Specifically, we choose to

optimizeU and S row by row. Then, we have the following update

Algorithm 1 Algorithm for Static QoS Prediction

Input: X ∈ Rm×n , l , γ , λu , λs , ηu , ηs ;
Output: U ∈ Rm×l , S ∈ Rn×l ;
1: Randomly initializeU and S ;
2: repeat
3: for i = 1 tom do
4: UpdateUi according to Eq. (10);

5: for j = 1 to n do
6: Update Sj according to Eq. (11);

7: until Convergence
8: return U , S ;

rules:

Ui ← Ui − ηu
∂L

∂Ui
, (10)

Sj ← Sj − ηs
∂L

∂Sj
, (11)

where ηu and ηs denote the learning rates forU and S , and

∂L

∂Ui
= λuUi −

n∑
j=1

Ii j
Xi j −UiSTj

γ 2 + (Xi j −UiSTj )
2

Sj , (12)

∂L

∂Sj
= λsSj −

m∑
i=1

Ii j
Xi j −UiSTj

γ 2 + (Xi j −UiSTj )
2

Ui . (13)

The overall optimization procedure of our method is presented

in Algorithm 1, whose time complexity is shown in Theorem 1.

Theorem 1. Let r denote the number of iterations for Algorithm 1
to achieve convergence and let ρ denote the number of available entries
in X , then the time complexity of Algorithm 1 is O(rρl).

Proof. The main time cost of Algorithm 1 lies in the updates of

U and S . In each iteration, updatingU takes O(ml + ρl) time and

updating S takes O(nl + ρl) time. Since bothm and n are less than

ρ, the time complexity of updatingU and S can both be simplified

as O(ρl). Thus, the overall time complexity is of order O(rρl). □

4.3 Extension for Time-Aware QoS Prediction
As pointed out in [62], the QoS performance of Web services is

highly related to the invocation time because the service status

(e.g., number of users) and the network environment (e.g., network

speed) may change over time. Thus, it is essential to provide time-

aware personalized QoS information to help users make service

selection at runtime [69]. In this part, we aim to extend our method

to make it suitable for time-aware personalized QoS prediction.

To achieve the goal, we choose to extend our method under the

tensor factorization framework. A tensor is a multidimensional or

N -way array [25]. AnN -way tensor is denoted asX ∈ RI1×I2×···×IN ,
which has N indices (i1, i2, · · · , iN ) and its entries are denoted by

Xi1i2 · · ·iN . In this sense, a tensor can be treated as a generalized

matrix and a matrix can also be treated as a two-way tensor.

For time-aware QoS prediction, we need to take the temporal

information of QoS values into consideration. According to the

definition of tensors, it is clear that we can model QoS observations

with temporal information as a three-way tensor X ∈ Rm×n×t

3102
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Algorithm 2 Algorithm for Time-Aware QoS Prediction

Input: X ∈ Rm×n×t , l , γ , λu , λs , λt ;
Output: U ∈ Rm×l , S ∈ Rn×l ,T ∈ Rt×l ;
1: Randomly initializeU ≥ 0, S ≥ 0 andT ≥ 0;
2: repeat
3: for i = 1 tom do
4: UpdateUi according to Eq. (17);

5: for j = 1 to n do
6: Update Sj according to Eq. (18);

7: for k = 1 to t do
8: UpdateTk according to Eq. (19);

9: until Convergence
10: return U , S ,T ;

whose each entry Xi jk represents the QoS value of Web service j
observed by user i at timek . Here, t denotes the total number of time

intervals. Accordingly, we can use an indicator tensor I ∈ Rm×n×t
to show whether the QoS values have been observed or not. If

user i has the record of Web service j at time k , Ii jk is set to 1;

otherwise, its value is set to 0. To predict the unknown QoS values

in X, similar to MF-based methods, we first factorize X to learn the

latent features of users, Web services and contexts, respectively, and

then leverage the interaction among them to predict QoS values.

Specifically, we adopt the canonical polyadic (CP) decomposition

method [38] to factorize X into three low-rank factor matrices

U ∈ Rm×l , S ∈ Rn×l and T ∈ Rt×l . Then, X is approximated in

the following way:

X ≈ X̂ =
l∑

ℓ=1

U (ℓ) ◦ S(ℓ) ◦T (ℓ), (14)

whereU (ℓ) ∈ Rm , S(ℓ) ∈ Rn andT (ℓ) ∈ Rt denote the ℓ-th column

ofU , S andT respectively, and ◦ represents the vector outer product.

In this way, each entry Xi jk is approximated by:

Xi jk ≈ X̂i jk =

l∑
ℓ=1

UiℓSjℓTkℓ . (15)

For tensor factorization, nonnegative constraints are usually en-

forced on the factor matrices to promote themodel’s interpretability

[43]. We also add nonnegative constraints to all the factor matrices

U , S and T . Then together with the Cauchy loss, we derive the

objective function for time-aware QoS prediction as below:

min

U ,S,T
L′ =

1

2

m∑
i=1

n∑
j=1

t∑
k=1

Ii jk ln
(
1 +
(Xi jk − X̂i jk )

2

γ 2

)
+
λu
2

∥U ∥2
2
+
λs
2

∥S ∥2
2
+
λt
2

∥T ∥2
2
,

s .t . U ≥ 0, S ≥ 0,T ≥ 0,

(16)

where λt denotes the regularization coefficient for matrixT .
Due to the nonnegative constraints, we cannot adopt the gradi-

ent descent method to optimize the objective function in Eq. (16)

any more. Alternatively, we use the multiplicative updating (MU)

algorithm [26] to solve Eq. (16). To be more specific, MU alternately

updatesU , S andT with the other two being fixed in each iteration.

Although the objective function in Eq. (16) is nonconvex overU ,

S and T simultaneously, it is a convex function in each variable

when the other two are fixed. Thus we can derive a closed-form

update rule for each variable under the Karush-Kuhn-Tucker (KKT)

conditions [5]. The detailed update rules are listed as follows:

Ui ← Ui ⊙

∑n
j=1

∑t
k=1 Ii jk∆i jkXi jk (Sj ⊙ Tk )∑n

j=1
∑t
k=1 Ii jk∆i jk X̂i jk (Sj ⊙ Tk ) + λuUi

, (17)

Sj ← Sj ⊙

∑m
i=1

∑t
k=1 Ii jk∆i jkXi jk (Ui ⊙ Tk )∑m

i=1
∑t
k=1 Ii jk∆i jk X̂i jk (Ui ⊙ Tk ) + λsSj

, (18)

Tk ← Tk ⊙

∑m
i=1

∑n
j=1 Ii jk∆i jkXi jk (Ui ⊙ Sj )∑m

i=1
∑n
j=1 Ii jk∆i jk X̂i jk (Ui ⊙ Sj ) + λtTk

. (19)

In the above equations, ∆i jk is defined as ∆i jk =
1

γ 2+(Xi jk−X̂i jk )
2

.

Algorithm 2 summarizes the overall optimization procedure of

our time-aware QoS prediction method. Since Algorithm 2 updates

U , S and T alternately and each update decreases the objective

function value monotonically, it is guaranteed to converge to a local

minimal solution. The time complexity of Algorithm 2 is shown in

Theorem 2.

Theorem 2. Let r ′ denote the number of iterations for Algorithm 2
to achieve convergence and let ρ ′ denote the number of available
entries in X, then the time complexity of Algorithm 2 is O(r ′ρ ′l).

Proof. The proof is similar to that of Theorem 1. In each itera-

tion, it takes O(ρ ′l) time to updateU , S andT . Therefore, the total
time complexity of Algorithm 2 is of order O(r ′ρ ′l). □

It is worth mentioning that in both Algorithm 1 and Algorithm 2,

we do not detect outliers explicitly. Thus our method will not suffer

from the problem of misclassification, which indicates that our

method is more resilient and more robust to outliers.

5 EXPERIMENTS
In this section, we conduct a set of experiments on both static QoS

prediction and time-aware QoS prediction to evaluate the efficiency

and effectiveness of our method by comparing it with several state-

of-the-art QoS prediction methods. We implement our method and

all baseline methods in Python 3.7. And all the experiments are

conducted on a server with two 2.4GHz Intel Xeon CPUs and 128GB

main memory running Ubuntu 14.04.5 (64-bit)
3
.

5.1 Datasets
We conduct all experiments on a publicly available dataset collection–

WS-DREAM
4
, which was collected from real-world Web services.

WS-DREAM contains both static and dynamic QoS datasets. The

static dataset describes real-world QoS measurements, including

both response time and throughput values, obtained from 339 users

on 5825 Web services. The dynamic dataset describes real-world

QoS measurements from 142 users on 4500 Web services over 64

consecutive time slices (at 15-minute interval). The dynamic dataset

also includes records of both response time and throughput values.

The statistics of the datasets are presented in Table 1.

3
The source code is available at https://github.com/smartyfh/CMF-CTF

4
https://github.com/wsdream/wsdream-dataset
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Table 1: Statistics of QoS Data

Type QoS Attributes #User #Service #Time Range Mean

Static

Response Time (s) 339 5825 - 0-20 0.9086

Throughput (kbps) 339 5825 - 0-1000 47.5617

Dynamic

Response Time (s) 142 4500 64 0-20 3.1773

Throughput (kbps) 142 4500 64 0-6727 11.3449
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Figure 3: Exemplary outlier detection results by iForest.

5.2 Evaluation Metrics
The most commonly used evaluation metrics for QoS prediction

include mean absolute error (MAE) [67] and root mean square error

(RMSE) [67]. Let Π denote the set of QoS values to be predicted (i.e.,

Π is the testing set) and let N = |Π |, then MAE is calculated as:

MAE =

∑
q∈Π |q − q̂ |

N
, (20)

and RMSE is calculated as:

RMSE =

√∑
q∈Π(q − q̂)

2

N
, (21)

where q̂ denotes the predicted value for the observation q. For both
MAE and RMSE, smaller values indicate better performance.

However, according to the definition of MAE and RMSE, we can

see that both MAE and RMSE are sensitive to outliers, which means

that if Π contains outliers, then MAE and RMSE cannot truly reflect

the QoS prediction performance. For example, suppose that q∗ ∈ Π
is an outlier, then in order to get a small MAE value and RMSE

value, the predicted q̂∗ should be close to q∗ rather than the normal

QoS value. As thus, a smaller MAE or RMSE value may not really

indicate better performance. To overcome this limitation, we elimi-

nate outliers from Π when calculating MAE and RMSE. Note that

we do not have groundtruth labels for outliers. Therefore, we need

to detect outliers from scratch. To achieve this goal, we employ

the iForest (short for isolation forest) method [29, 30] for outlier

detection. iForest detects outliers purely based on the concept of iso-
lation without employing any distance or density measure, making

iForest quite efficient and robust. iForest will calculate an outlier

score for each datum. The score takes value in the range of [0, 1]

and a larger value indicates more possibility to be outliers. Based

on the outlier score, we can set the number of outliers flexibly. To

intuitively show the effectiveness of iForest, we report the outlier
detection results of a randomly selected Web service from the static

dataset in Figure 3, where the outlier ratio is set to 0.05. As can be

seen, iForest demonstrates good performance in outlier detection.

It can detect both overinflated and underinflated outliers.

5.3 Baseline Methods
For ease of presentation, we name our method for static QoS pre-

diction as CMF and our method for time-aware QoS prediction as

CTF hereafter. For static QoS prediction, we compare CMF with

the following five methods:

• MF2: MF2 denotes the basicMF-basedQoS predictionmethod

[66] and it measures the discrepancy between the observed

QoS values and the predicted ones by L2-norm.

• MF1: MF1 is also an MF-based QoS prediction method [71].

However, it utilizes the L1-norm loss to construct the objec-

tive function. MF1 is expected to be more robust to outliers.

Note that we implement MF1 a little differently from the

original one proposed in [71]. In our implementation, we

ignore the privacy and location information.

• CAP: CAP is a credibility-aware QoS prediction method [47].

It first employs a two-phase k-means clustering algorithm to

identify untrustworthy users (i.e., outliers), and then predicts

unknown QoS values based on the clustering information

contributed by trustworthy users.

• TAP: TAP is a trust-aware QoS prediction method [45]. It

aims to provide reliable QoS prediction results via calculating

the reputation of users by a beta reputation system, and it

identifies outliers based on k-means clustering as well.

• DALF: DALF is a data-aware latent factor model for QoS

prediction [49]. It utilizes the density peaks based clustering

algorithm [40] to detect unreliable QoS data directly.

For time-aware QoS prediction, we compare our CTF with the

following five methods:

• NNCP: NNCP is a tensor-based time-aware QoS prediction

method [60]. It is based on CP decomposition and imposes

nonnegative constraints on all the factor matrices.

• BNLFT: BNLFT is a biased nonnegative tensor factorization

model [33]. It incorporates linear biases into the model for

describing QoS fluctuations, and it adds nonnegative con-

straints to the factor matrices as well.

• WLRTF: WLRTF is an MLE (maximum likelihood estima-

tion) based tensor factorization method [9]. It models the

noise of each datum as a mixture of Gaussian (MoG).

• PLMF: PLMF is an LSTM (long short-term memory) [20]

based QoS prediction method [54]. PLMF can capture the

dynamic latent representations of users and Web services.

• TASR: TASR is a time-aware QoS prediction method [11]. It

integrates similarity-enhanced collaborative filtering model

and the ARIMA model (a time series analysis model) [4].

AlthoughMF1, CAP, TAP and DALF are able to deal with outliers

to some extent for static QoS prediction, to our best knowledge,

our method CTF is the first to take outliers into consideration for

time-aware QoS prediction. It is also worth emphasizing that our

method and all baseline methods (except CAP, TAP and DALF) will

not explicitly detect outliers when learning the prediction model.

The reason for detecting outliers during the testing phase is to

make MAE and RMSE be able to truly reflect the QoS prediction

performance. For all methods, outliers will be removed when calcu-

lating MAE and RMSE. In addition, in the experiments, we run each

method 10 times and report the average results for fair comparison.
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Table 2: Performance Comparison with Different Training Ratios on Static Dataset (Best Results in Bold Numbers)

QoS Attributes Methods MAE RMSE
10% 20% 30% 70% 80% 90% 10% 20% 30% 70% 80% 90%

Response Time

MF2 0.5334 0.4103 0.3534 0.3044 0.2921 0.2848 0.8407 0.6978 0.6195 0.5742 0.5565 0.5438

MF1 0.4041 0.4037 0.4036 0.2815 0.2786 0.2798 0.6120 0.6106 0.6103 0.5590 0.5544 0.5505

CAP 0.3603 0.3521 0.3312 0.2282 0.2112 0.1881 0.6439 0.6640 0.6789 0.5815 0.5987 0.5821

TAP 0.3385 0.2843 0.2449 0.2477 0.2812 0.3189 0.5512 0.4985 0.4589 0.4687 0.5155 0.5665

DALF 0.3955 0.3439 0.3081 0.2496 0.2492 0.2397 0.7466 0.6779 0.5974 0.5471 0.5403 0.5388

CMF 0.1762 0.1524 0.1408 0.1153 0.1102 0.1085 0.3705 0.3599 0.3504 0.3106 0.2877 0.2699

Throughput

MF2 13.9730 12.3750 10.7753 7.8371 7.8255 7.8071 28.9608 26.8906 24.6608 19.6406 19.2831 18.6451

MF1 16.5509 13.1105 10.7200 7.5736 7.3263 7.1115 33.8889 27.9648 23.6611 18.1316 17.9458 17.3698

CAP 16.4269 16.3125 16.1946 9.7147 8.6984 7.8516 32.9558 32.9334 32.9540 23.7955 22.2425 21.3711

TAP 22.1419 19.8273 17.8388 14.5786 14.8380 15.4028 43.4987 40.9533 38.8371 33.3052 32.4076 32.0935

DALF 13.1968 11.9619 10.6882 7.8156 7.7902 7.7771 27.8531 26.0299 24.4506 19.3523 18.9886 18.2965

CMF 8.4573 7.2501 6.4300 5.1865 5.1241 5.0078 24.9137 20.8927 18.8985 17.2916 17.1433 16.9388

Table 3: Performance Comparison with Different Outlier Ratios on Static Dataset (Best Results in Bold Numbers)

QoS Attributes Methods MAE RMSE
2% 4% 6% 8% 10% 20% 2% 4% 6% 8% 10% 20%

Response Time

MF2 0.4080 0.3732 0.3533 0.3445 0.3306 0.3072 0.8040 0.7210 0.6711 0.6508 0.6021 0.5810

MF1 0.3761 0.3390 0.3185 0.2972 0.2702 0.2525 0.7935 0.6903 0.6398 0.5918 0.5575 0.3744

CAP 0.4163 0.3657 0.3311 0.2997 0.2739 0.2413 0.9789 0.8375 0.7616 0.6817 0.6191 0.5258

TAP 0.4562 0.3788 0.3268 0.2703 0.2183 0.1649 1.1536 0.9393 0.8148 0.6475 0.4294 0.2478

DALF 0.3622 0.3217 0.3071 0.2890 0.2781 0.2480 0.7695 0.6728 0.6346 0.5975 0.5701 0.5132

CMF 0.2134 0.1758 0.1545 0.1384 0.1253 0.1019 0.6582 0.5001 0.4452 0.3811 0.3195 0.2347

Throughput

MF2 11.8832 10.7024 9.6776 9.0889 8.6373 8.1358 32.9795 28.5992 25.3608 22.9710 21.1042 18.5597

MF1 12.3647 10.7403 9.8674 9.2223 8.7708 8.1667 32.9672 27.7982 24.4438 22.1691 20.2018 17.4015

CAP 18.2991 16.8273 15.5975 13.8889 13.6477 12.6762 45.9353 39.6390 35.5944 31.4784 29.2029 25.2830

TAP 22.0584 18.8479 16.9577 15.9026 15.1283 14.2151 58.5192 47.7490 41.6689 38.5700 35.2813 31.2779

DALF 11.8763 10.5724 9.1783 8.9276 8.6037 8.0449 32.8586 28.5797 24.8752 22.7428 20.9789 18.3713

CMF 8.3266 7.2138 6.5143 6.0463 5.5718 5.0177 30.5885 26.0933 22.9529 20.7105 17.8538 14.7925

5.4 Experiments for Static QoS Prediction
5.4.1 Parameter Settings. In the experiments, for all baseline meth-

ods, we tune the corresponding parameters following the guidance

of the original papers. As for our method CMF, on the response

time dataset, the parameters are set as l = 30, γ = 1, λu = λs = 1,

and ηu = ηs = 0.003. On the throughput dataset, the parameters

are set as l = 30, γ = 20, λu = λs = 0.01, and ηu = ηs = 0.025. For

MF2, MF1 and DALF, the feature dimensionality is also set to 30.

5.4.2 Experimental Results. We first report the results by varying

the training ratios in the range of {0.1, 0.2, 0.3, 0.7, 0.8, 0.9}. This is

to simulate various prediction scenarios with different data sparsity.

For example, when the training ratio is set to 0.1, then 10% of the

dataset will be used as training data and the rest will be used as

testing data. As aforementioned, during the testing phase, outliers

should be eliminated explicitly. Here we set the outlier ratio to 0.1,

which means 10% of the testing data with large outlier scores will

be removed when calculating MAE and RMSE. The detailed com-

parison results are presented in Table 2. As can be seen, our method

CMF consistently shows better performance than all baseline meth-

ods. Moreover, the MAE and RMSE values obtained by our method

are much smaller than those of baseline methods, especially on

the response time dataset. For instance, CMF achieves more than

30% performance promotion on response time over both MAE and

RMSE. From Table 2, we can also see that MF1, MF2, DALF and CMF

tend to obtain smaller MAE and RMSE values as the training ratio

increases. This is desired because a larger training ratio indicates

that more QoS observations (i.e., more information) will be used to

train the prediction model. However, CAP and TAP do not show

this pattern, especially on the response time dataset. We can also

observe that although CAP, TAP and DALF explicitly take outliers

into consideration during the training phase, their performance is

not satisfactory. The reason may be the misclassification of outliers.

Since our method does not detect outliers directly during the train-

ing phase, it will not suffer from the misclassification issue. The

resilience of our method to outliers makes it more robust.

We then report the results by varying the outlier ratios in the

range of {0.02, 0.04, 0.06, 0.08, 0.1, 0.2}. In this experiment, the

training ratio is fixed at 0.5. The results are shown in Table 3. From

Table 3, we can see that our method still shows the best performance

under different outlier ratios. It can also be observed that the MAE

and RMSE values of all methods become smaller as the outlier ratio

increases. This is reasonable because the larger the outlier ratio

is, the more testing data with large outlier scores will be removed.

Thus, the effects of outliers on the calculation of MAE and RMSE

will be reduced accordingly. From Table 3, we can further obtain

that with the increasing of outlier ratios, the performance promo-

tion of CMF relative to MF2 increases from 48% to 67% over MAE
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Figure 4: Impact of dimensionality l on CMF (with outlier ratio set to 0.02 and 0.1).
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Figure 5: Impact of parameter γ on CMF (with outlier ratio set to 0.02 and 0.1).
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Figure 6: Impact of data sparsity on CMF (with outlier ratio set to 0.02 and 0.1).

and from 18% to 60% over RMSE on the response time dataset. On

the throughput dataset, the performance promotion also increases

from 30% to 38% over MAE and from 7% to 20% over RMSE. The

increase of performance promotion verifies the necessity of remov-

ing outliers during the testing phase. It also verifies the robustness

of our proposed method again.

5.4.3 Impact of Dimensionality. The parameter dimensionality l
controls the dimension of latent features in the factor matrices. To

study the impact of l , we vary its value from 10 to 80 with a step

size of 10. In this experiment, the training ratio is fixed at 0.5 and

the outlier ratio (denoted as o) is set to 0.02 and 0.1. The results are

illustrated in Figure 4. As we can see, both MAE and RMSE take

smaller values when dimensionality l grows. This is because when
l takes larger values, more features of users and Web services will

be captured, thus resulting in more accurate prediction results. We

also observe on the throughput dataset that the performance tends

to be stable when l ≥ 40, which indicates that l = 40 is sufficient

for the factor matrices to approximate the original matrix well.

5.4.4 Impact of Parameter γ . Recall that γ denotes the constant in

the Cauchy loss. Here we study its impact on the performance of our

method by varying its value in the range of {0.1, 0.5, 1, 5, 10, 20, 50}.

In this experiment, the training ratio is fixed at 0.5, and the outlier

ratio o is set to 0.02 and 0.1 as well. The results are illustrated in

Figure 5. As can be seen, our method is sensitive to γ . This is due to
that γ implicitly determines which data will be treated as outliers

during the training phase. Thus we need to choose a proper γ to

achieve the best performance. As shown in Figure 5, γ should take

value around 1 on the response time dataset and around 20 on the

throughput dataset to obtain accurate prediction results.

5.4.5 Impact of Data Sparsity. To evaluate the performance of our

method comprehensively, it is also necessary to investigate the
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Table 4: Performance Comparison with Different Training Ratios on Dynamic Dataset (Best Results in Bold Numbers)

QoS Attributes Methods MAE RMSE
10% 20% 30% 70% 80% 90% 10% 20% 30% 70% 80% 90%

Response Time

NNCP 1.0796 1.0536 1.0550 1.0424 1.0406 1.0392 2.6401 2.5797 2.5809 2.5574 2.5668 2.5616

BNLFT 1.0828 1.0575 1.0467 1.0368 1.0556 1.0403 2.6181 2.5809 2.5682 2.5559 2.5731 2.5582

WLRTF 1.0560 1.0437 1.0288 1.0299 1.0218 1.0274 2.6009 2.5706 2.5642 2.5566 2.5571 2.5491

PLMF 2.6133 2.5932 2.4054 2.2097 2.1266 2.0247 4.5582 4.3536 4.3294 4.1843 3.9818 3.8542

TASR 2.8188 2.7120 2.5591 2.1184 2.0066 1.8854 6.3872 6.1807 5.9552 5.0212 4.8000 4.5447

CTF 0.9215 0.8981 0.8890 0.8860 0.8766 0.8750 2.5865 2.5579 2.5548 2.5529 2.5517 2.5401

Throughput

NNCP 1.5079 1.4342 1.4287 1.3761 1.3708 1.3761 4.9207 4.7019 4.6404 4.5080 4.4484 4.4968

BNLFT 1.4241 1.3935 1.3791 1.3856 1.3695 1.3613 4.6031 4.4685 4.4537 4.4128 4.3595 4.3493

WLRTF 2.9576 2.9568 2.9564 2.9561 2.9562 2.9537 4.9161 4.9160 4.9165 4.9153 4.9159 4.9095

PLMF 2.4712 2.2602 2.4459 2.3328 2.4655 2.2329 3.6705 3.8363 3.8455 3.8209 3.7541 3.5119

TASR 4.3265 3.6419 3.4736 2.8803 2.8258 2.7417 5.9152 5.1844 5.0034 4.3744 4.3142 4.2709

CTF 1.3567 1.1945 1.1225 0.9907 0.9889 0.9782 3.0436 2.9225 2.8576 2.7732 2.6978 2.6178

Table 5: Performance Comparison with Different Outlier Ratios on Dynamic Dataset (Best Results in Bold Numbers)

QoS Attributes Methods MAE RMSE
2% 4% 6% 8% 10% 20% 2% 4% 6% 8% 10% 20%

Response Time

NNCP 1.1846 1.1451 1.1069 1.0692 1.0521 1.0204 2.6740 2.6393 2.6023 2.5826 2.5805 2.5799

BNLFT 1.1647 1.1253 1.0871 1.0654 1.0475 0.9936 2.6499 2.6149 2.5771 2.5687 2.5659 2.5646

WLRTF 1.1436 1.1036 1.0562 1.0435 1.0261 0.9758 2.6438 2.6079 2.5696 2.5609 2.5584 2.5581

PLMF 2.6379 2.6011 2.5798 2.4241 2.3315 2.3162 5.2828 5.0571 4.7704 4.5917 4.2765 4.0729

TASR 2.5125 2.4326 2.3589 2.3363 2.3292 2.3019 5.4851 5.4510 5.4229 5.4018 5.3942 5.3877

CTF 1.0292 0.9813 0.9357 0.9105 0.8879 0.8448 2.6369 2.6015 2.5627 2.5564 2.5541 2.5503

Throughput

NNCP 2.4853 2.0339 1.7508 1.5419 1.3926 1.0231 9.8925 7.6471 6.2757 5.2096 4.5026 2.8916

BNLFT 2.4335 1.9909 1.7163 1.5137 1.3693 1.0117 9.7267 7.4979 6.1664 5.1236 4.4319 2.8376

WLRTF 6.4309 4.8846 3.9224 3.3382 2.9562 2.0911 17.9461 11.6611 7.9882 5.9178 4.9156 3.1509

PLMF 5.3105 4.1556 3.0467 2.9632 2.3924 2.1807 13.7985 8.7995 6.6349 4.9651 3.8347 3.7906

TASR 5.7661 4.5595 3.8264 3.3965 3.1322 2.6317 14.8241 9.7143 6.8450 5.2958 4.6089 3.5886

CTF 2.2624 1.6385 1.3421 1.1437 1.0193 0.7323 9.5370 6.0759 4.3650 3.2415 2.7989 1.8020

impact of the sparsity of training data. To this end, we vary the

training ratio from 0.1 to 0.9 with a step size of 0.1. Apparently,

different training ratio implies different data sparsity. In this ex-

periment, we also set the outlier ratio o to 0.02 and 0.1. The results

are reported in Figure 6. From Figure 6, we see that as the training

ratio increases (i.e., the sparsity of data decreases), more accurate

results are obtained.

5.5 Experiments for Time-Aware QoS
Prediction

We further conduct experiments for time-aware QoS prediction.

5.5.1 Parameter Settings. In the experiments, we tune the param-

eters of all baseline methods following the guidance of the origi-

nal papers. As for our method CTF, on the response time dataset,

the parameters are set as l = 15 and λu = λs = λt = 0.1. γ is

set to 10 when calculating MAE and 35 when calculating RMSE.

On the throughput dataset, the parameters are set as l = 15 and

λu = λs = λt = 100. γ is fixed at 5 for both MAE and RMSE. As

for NNCP, BNLFT, WLRTF and PLMF, the feature dimensionality

is also set to 15.

5.5.2 Experimental Results. We first report the results by varying

the training ratios in the range of {0.1, 0.2, 0.3, 0.7, 0.8, 0.9} and

fixing the outlier ratio at 0.1. The results are presented in Table 4.

From Table 4, we can see that our method consistently shows better

performance than all baseline methods on both datasets. The results

verify the robustness of our method in the time-aware extension.

We then report the results by varying the outlier ratios in the

range of {0.02, 0.04, 0.06, 0.08, 0.1, 0.2} and fixing the training ratio

at 0.5. The results are shown in Table 5, from which we observe that

our method achieves better performance under different outlier

ratios, which is similar to the results on the static dataset.

5.6 Efficiency Analysis
Here, we further investigate the runtime efficiency of our method.

In this experiment, we fix the training ratio at 0.5 and the outlier

ratio at 0.1. The runtime of different methods on the response time

dataset is reported in Figure 7. On the static dataset, we can observe

that CMF is very efficient. Its runtime is comparable to that of MF2

and MF1. It also runs much faster than CAP, TAP and DALF. On the

dynamic dataset, although CTF runs slower than PLMF and TASR,

it is faster than BNLFT and WLRTF and is comparable to NNCP.
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Figure 7: Runtime comparison of different methods on the
response time dataset.

6 RELATEDWORK
6.1 Collaborative QoS Prediction
Most existing QoS prediction methods fall into collaborative filter-

ing methods [47], which can be further divided into two categories:

memory-based methods [6, 7, 22, 41, 67] and model-based methods

[39, 44, 51, 53, 59]. Memory-based methods predict unknown QoS

values by employing the neighbourhood information of similar

users and similar Web services [65], which further leads to user-

based methods [6], service-based methods [41] and hybrid methods

[7, 22, 67] that systematically combine the user-based methods and

service-based methods. Memory-based methods usually suffer from

the data sparsity problem [61, 66], due to the limited number of

Web services a single user will invoke. Model-based methods can

deal with the problem of data sparsity, thus they have gained the

most popularity [61]. Model-based methods usually train a prede-

fined prediction model based on existing QoS observations and

then predict missing QoS values. For example, Wu et al. [52] pro-

pose to train a factorization machine model for QoS prediction. Luo

et al. [32] introduce fuzzy neural networks and adaptive dynamic

programming to predict QoS values. Matrix factorization is also

a model-based technique and it has obtained the most attention

[31, 44, 53, 61, 66]. MF-based methods factorize the user-service

matrix into two low-rank factor matrices with one factor matrix

capturing the latent representations of users and another revealing

the latent representations of Web services. Therefore, MF-based

methods are able to automatically model the contributions to a spe-

cific QoS value from the user side and service side simultaneously,

which usually results in better prediction performance. In addition,

MF-based methods possess high flexibility of incorporating side

information such as location [19], contexts [50, 51] and privacy

[28]. MF-based methods can also be easily generalized for time-

aware QoS prediction under the tensor factorization framework

[33, 46, 60, 62]. There are also a few other kinds of time-aware QoS

prediction methods like time series model-based methods [1, 11]

and neural networks-based methods [54].

6.2 Reliable QoS Prediction
Although there are various QoS prediction methods, few of them

have taken outliers into consideration. However, as analyzed in Sec-

tion 2, some QoS observations indeed should be treated as outliers.

Thus, the performance of existing methods may not be reliable. For

example, most existing MF-based QoS prediction methods directly

utilize L2-norm to measure the discrepancy between the observed

QoS values and the predicted ones [31, 44, 50, 53, 57, 66]. It is widely

accepted that L2-norm is not robust to outliers [8, 58, 70]. As a con-

sequence, the performance of MF-based methods may be severely

influenced when QoS observations contain outliers.

In order to obtain reliable QoS prediction results, it is necessary

to take outliers into consideration. One popular method to reduce

the effects of outliers is replacing L2-norm with L1-norm because

L1-norm is more robust to outliers [13, 23, 35, 64]. For example, an

L1-norm low-rank MF-based QoS prediction method is introduced

in [71]. However, L1-norm-based objective function is non-smooth

and thus much harder to optimize [34, 56]. Besides, L1-norm is still

sensitive to outliers, especially when outliers are far beyond the

normal range of QoS values [10, 55].

Another line of reliable QoS prediction is detecting outliers ex-

plicitly based on clustering algorithms. In [47], Wu et al. propose

a credibility-aware QoS prediction method, which employs a two-

phasek-means clustering algorithm to identify untrustworthy users

(i.e., outliers). Su et al. [45] propose a trust-aware QoS prediction

method, which provides reliable QoS prediction results via cal-

culating the reputation of users by a beta reputation system and

identifies outliers based on k-means clustering as well. In [49], a

data-aware latent factor model is introduced, which utilizes the

density peaks-based clustering algorithm [40] to detect unreliable

QoS values. However, it is difficult to choose a proper number of

clusters, thus either some outliers may not be eliminated success-

fully or some normal values may be selected as outliers falsely. Our

method does not detect outliers explicitly. Therefore it will not

suffer from the misclassification issue.

7 CONCLUSION
In this paper, we have proposed a novel robust QoS prediction

method, which utilizes Cauchy loss to measure the discrepancy

between the observed QoS values and the predicted ones. Owing

to the robustness of Cauchy loss, our method is resilient to outliers.

That is, there is no need to detect outliers explicitly. Therefore,

our method will not suffer from the problem of misclassification.

Considering that the QoS performance may change over time, we

have further extended ourmethod tomake it suitable for time-aware

QoS prediction. To evaluate the efficiency and effectiveness of our

method, we have conducted extensive experiments on both static

and dynamic datasets. Experimental results have demonstrated that

our method can achieve better performance than existing methods.
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